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Abstract

The paper studies the free convection flow of a compressible Boussinesq fluid under the simultaneous action of buoyancy and trans-
verse magnetic field while the Rosselant approximation has been invoked to describe the radiative flux in the energy equation. The
viscosity of the fluid m and its thermal conductivity k in this model are assumed to be functions of temperature. Under suitable non-
dimensionalization the governing non-linear, coupled, partial differential equations are solved employing a perturbation technique based
on the assumption that the fluid flow field is made up of a steady part and a transient. Results obtained which compare favourably well
with published data show, that the skin friction for a compressible fluid is lower than that for an incompressible fluid.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of free convection flow past a vertical plate
has applications in many areas of science and engineering.
Quite a few studies have been done in this area looking at
different aspects of applications where the vertical plate
sometimes is immersed in a porous medium but only a
few of these works will be mentioned here. Singh and Dik-
shit [4] studied hydrodynamic flow past a continuously
moving semi-infinite plate with large suction, while in Best-
man [11] the focus was on chemically reacting species. As
noted in Bestman and Adjepong [1,2], in the presence of
radiative heat we cannot regard the viscosity m and the ther-
mal conductivity k as constant since these in general are
known to vary with temperature. Having said that, Ogulu
and Bestman [7,8] in earlier studies have shown that for
blood flow studies, it is safe to assume constant viscosity
(Newtonian) for blood within the realms of physiotherapy
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despite the fact that some of the blood vessels involved
have diameters comparable with the radius of the red blood
cells. Raptis [10] studied the flow of a micro-polar fluid past
a continuously moving plate by the presence of radiation
assuming a constant viscosity. Takhar et al. [9] also studied
radiation effects on MHD free convection flow of a fluid
past a semi-infinite vertical plate where the viscosity m
and the thermal conductivity k where assumed constant.

Azzam [5] studied radiation effects on the MHD mixed
free-forced convective flow past a semi-infinite moving ver-
tical plate for high temperature differences where though
the viscosity m and the thermal conductivity k were
assumed to vary with temperature, the fluid was not
regarded as a Boussinesq fluid hence the motivation for this
study which involves the effect of radiation on unsteady
free convection flow of a compressible Boussinesq fluid
past a semi-infinite vertical plate. We propose to study
the effect of radiation on free convection flow of a com-
pressible Boussinesq fluid since most of the studies men-
tioned above assumed the fluid to be incompressible. The
procedure adopted here is as outlined below.
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Nomenclature

u velocity components
y coordinate
T dimensional temperature
k thermal conductivity
cp specific heat at constant pressure
b coefficients of volume expansion due to temper-

ature
l permeability
Pr Prandtl number
r* Stefan–Boltzmann constant
V0 scale of free stream velocity
q fluid density
t time
q density
e time corrective parameter, (e� 1)
M magnetic Hartmann number

k* Rosseland absorption coefficient
h non-dimensional temperature
g acceleration due to gravity
r electrical conductivity
H0 magnetic field
q radiative flux vector
Gr free convection parameter
m kinematic coefficient of viscosity
Up plate velocity

Superscript
0 differentiation with respect to z

Subscripts

w wall condition
1 free stream condition

Fig. 1. The physical co-ordinate system.
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2. Formulation of the problem

We consider the unsteady two-dimensional flow of an
electrically conducting fluid. As in Bestman and Adjepong
[1,2], we assume that the fluid viscosity m varies as the tem-
perature T in the form

m a T x; ð1aÞ

where x is a constant, (for water x = 0.76). The flow is
buoyancy driven and the fluid obeys the simple Boussinesq
equation of state

q1 � q ¼ q1bðT � T1Þ: ð1bÞ

We further assume that induced magnetic fields are negligi-
ble, there is no external electric field present and flow veloc-
ities are slow hence no viscous dissipation heating. The
plate is infinite therefore all variables are functions of y

and t only except the pressure. With these assumptions
and those usually associated with the Boussinesq approxi-
mation the proposed governing equations for this model
(see Fig. 1) are
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Subject to the boundary conditions

u0 ¼ U 0; T ¼ T w at y0 ¼ 0;

u0 ! U1; T ! T1 as y0 ! 1:
ð5a; bÞ

Though m and k vary with temperature, the fluid still obeys
the Boussinesq equation, Bestman and Adjepong [1]. Fur-
thermore, from Eq. (2) we take the constant suction normal
to the plate and write

v0 ¼ �V 0 ð6Þ

Outside the boundary layer Eq. (3) gives

� 1

q
dp0

dx0
¼ dU 01

dt0
þ rl2H 2

0U 01
q

: ð7Þ

For the energy equation we invoke the Rosseland approx-
imation for the radiative flux thus

oq0

oy0
¼ � 4r�

3k�
oT 4

oy 0
ð8Þ
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In view of Eqs. (6)–(8) our leading equations become
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¼ dU1
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The appropriate boundary conditions now are

h ¼ 1; u ¼ Up at y ¼ 0

h! 0; u! U1 as y !1:
ð11Þ

In Eqs. (9) and (10) we have introduced the following non-
dimensional variables

u0 ¼ uU 0; up ¼ UpU 0; v0 ¼ vV 0; y 0 ¼ vy
V 0

;

U 01 ¼ U 0U1; t0 ¼ tv

V 2
0

; h ¼ T � T1
T w � T1

; M ¼ rH 2
0

qV 2
0

;

Pr ¼ mqcp

k
; Ra ¼

16r�T 3
1

3kk�
; Gr ¼ gbm

V 3
0

ðT � T1Þ ð12Þ

The problem in mathematical terms involves the solution
of Eqs. (9) and (10) subject to the boundary conditions in
(11). The problem depends on the free convection parame-
ter or Grashoff number Gr, Prandtl number Pr, the
square of the Hartman number M2 and the radiation
parameterRa.
3. Method of solution

The problem as posed in Eqs. (9) and (10) is non-linear
and coupled, however if we assume the Prandtl number is
constant then in the spirit of Bestman and Adjepong [1,2]
we can seek asymptotic expansions for our flow variables
about a small parameter e (a time corrective parameter),
thereby splitting the problem into two components – a
steady state and a transient state; thus

uðy; tÞ ¼ uð0ÞðyÞ þ euð1Þðy; tÞ þ � � �
hðy; tÞ ¼ hð0ÞðyÞ þ ehð1Þðy; tÞ þ � � �

ð13Þ

When we substitute Eq. (13) into Eqs. (9) and (10) we ob-
tain the following sequence of approximations

1

Pr
d

dy
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 !
þ Ra

d2hð0Þ

dy2
¼ 0 ð14Þ

dhð0Þx

dy
þ duð0Þ

dy
þM2uð0Þ þ Grhð0Þ ¼ 0 ð15Þ

uð0Þ ¼ Up; hð0Þ ¼ hw at y ¼ 0

uð0Þ ¼ 1; hð0Þ ! 0 as y !1

)
t > 0; ð16Þ

where hw is the wall normalized temperature,
ohð1Þ

ot
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oy2
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ð17Þ
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uð1Þ ¼ 0; hð1Þ ¼ 1; at y ¼ 0

uð1Þ ¼ 0; h! 0; as y !1

)
t > 0: ð19Þ

We continue the analysis by re-casting Eq. (14) as

d

dy
dhð0Þxþ1

dy

 !
þ d

dy
ðxþ 1ÞPrRa

dhð0Þ

dy

 !
¼ 0: ð20Þ

Integrating Eq. (20) twice subject to the conditions in Eq.
(16), we can show that

hð0ÞðyÞ ¼ hw: ð21Þ
From Eq. (21) we have, dhð0Þx

dy ¼ 0, hence Eq. (15) now
becomes

duð0Þ

dy
þM2ðuð0Þ � 1Þ � Grhw ¼ 0 ð22Þ

which can be solved subject to the conditions in Eq. (16) to
obtain

uð0ÞðyÞ ¼ 1þ ðU p � 1Þe�M2y þ Grhw

M2
: ð23Þ

Next we cast Eq. (17) in the form

o2hð1Þ

oy2
¼ k2 ohð1Þ

ot
ð24Þ

where, k2 ¼ Pr
hð0ÞxþPrRa

. Employing Laplace transforms we can

show from Eq. (24) subject to appropriate boundary condi-
tions in Eq. (19) that

hð1Þðy; tÞ ¼ erfc
ky

2
ffiffi
t
p

� �
: ð25Þ

On appeal to Abramowitz and Stegun [6], we can cast Eq.
(25) in the form

hð1Þðy; tÞ ¼ 2

p
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2
ffi
t
p

e�v2

dv t > 0: ð26Þ

The solution of Eq. (18) is expedited by writing it in the
form
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On the strength of Eq. (26) we can write
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ð28Þ
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For t small, hð1Þ

hð0Þ
will be small since ky

2
ffi
t
p ! 1 for small t. For t

large the steady state case prevails, hence it is reason-

able and convenient to assume hð1Þ

hð0Þ
¼ 0, so that Eq. (27)

reduces to

ouð1Þ

ot
¼ hð0Þx

o
2uð1Þ

oy2
�M2uð1Þ þ Grhð1Þ: ð29Þ

Taking the Laplace transform of Eq. (29) subject to the
boundary and initial conditions, Tokis [3]:

uð1Þ ¼ U 0f ðtÞ at y ¼ 0;

uð1Þ ! 0 as y !1;
ð30Þ

we obtain

hð0Þx
d2�uð1Þ

dy2
� ðM2 þ sÞ�uð1Þ ¼ �Gr

s
e�y

ffiffiffi
ks
p

ð31Þ

and the boundary conditions are now

�uð1Þð0; sÞ ¼ U 0f ðsÞ�uð1Þð1; sÞ ¼ 0: ð32Þ

Solution of Eq. (31) subject to (32) gives
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Appealing to tables of inverse transforms in Abramowitzc
and Stegun [6] Eq. (33) gives

uð1Þ ¼ /ðy; tÞ
Z t

0

/�ðy; sÞf ðt � sÞ þ Aiðy; tÞ
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U 0HðtÞ
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ð34Þ

H(t) is the heaviside step function and Ai(y, t), i = 1,2 is the
sum of the inversion of the other terms on the right hand
side of Eq. (33). We now consider three special cases of
the function f(t) in Eq. (30);

(i) Single pulse. In this special case f(t) = H(t). Substitut-
ing this in Eq. (34) we can show that� ��

uð1Þðy; tÞ ¼ HðtÞ
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(ii) Accelerated motion. In this special case we put
f ðtÞ ¼ t

t0
HðtÞ where t0 is a constant, Eq. (34) now

gives
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(iii) Decaying oscillatory motion.
Here f ðtÞ¼Re HðtÞe�ðk2�ifÞt
h i

¼HðtÞ
2
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h i

;

where k and f (>0) are real dimensionless constants.
Substituting for f(t) now in Eq. (34) gives

uð1Þðy; tÞ ¼ HðtÞ
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where

a1þ ib1� M�k2þ if
	 
1=2

a2� ib2� M�k2� if
	 
1=2

:

It is now convenient to write out the expressions for Ai(y, t).
When kh(0)x 6¼ 1 and
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and when kh(0)x = 1 we have
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Having obtained complete expressions for the transient
velocity we can now obtain the skin friction. Defining the
non-dimensional skin friction s as

s ¼ ouð1Þ

oy

����
y¼0

we will have;

(i) Single pulse.
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when kh(0)x 6¼ 1, and
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when kh(0)x = 1.

(ii) Accelerated motion.
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when kh(0)x 6¼ 1, and
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when kh(0)x = 1.
(iii) Decaying oscillatory motion.
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sð3Þ1 ¼
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when kh(0)x 6¼ 1, and
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when kh(0)x = 1.
The solutions are now complete.

4. Results and discussion

An analysis is presented for the effects of radiation on
the unsteady compressible flow of a Boussinesq fluid past
a semi-infinite vertical flat plate. This problem is governed
by a set of coupled, non-linear, partial differential equa-
tions (9)–(11) which are solved employing asymptotic
expansions about a small geometric parameter e (e� 1),
followed by integration with respect to y, the span-wise
coordinate. Three special cases are considered in the anal-
ysis but only one of them, the single pulse case, will be dis-
cussed here for brevity. For the purpose of the numerical
discussion we choose suitable values of the parameters of
the problem to show the applicability of the solutions
obtained. For the Prandtl number Pr, we choose Pr = 7,
as corresponds to water or Pr = 0.7 as corresponds to
air. The other parameters are varied arbitrarily. As noted
in Mbeledogu and Ogulu [12], as the time parameter t,
increases we approach steady state so t = 0.15 is within
the transient problem. Fig. 2 shows the effect of the param-
eters of the problem on the temperature distribution where
we observe that an increase in the radiation parameter



Fig. 2. Temperature distribution, t = 0.15.
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Fig. 3. Plot of u(1) versus y from Eq. (35).

Fig. 4. Skin friction at the wall for a single pulse.
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leads to a decrease in the temperature boundary layer and
hence the temperature, while increase in the Prandtl num-
ber leads to a decrease in the temperature boundary layer.
Variation in the exponential index x or the wall normaliza-
tion temperature hw, have little effect on the temperature
distribution.

Fig. 3 shows the effect of material parameters on the
velocity distribution for a single pulse with kh(0) = 1 and
H(t) = 1. Fig. 3 shows that generally, the velocity distribu-
tion reaches a maximum value near the plate before it then
decreases to the free stream value. We observe also from
Fig. 3 that the velocity increases as the free convection
parameter Gr, the magnetic Hartmann number M and
the Prandtl number Pr are increased, but is not visibly
affected by increase in the exponential index x. This means
that the increase in the velocity observed as a result of
increase in Gr, M, and Pr would still be observed whether
we our working fluid is compressible or incompressible. It
is worthy of note here that x = 0 corresponds to the case
of an incompressible fluid. These observations compliment
nicely those reported in Bestman [11].
CURVE
 t
 Pr
 M
 Gr
 Ra
 x

I
 0.05
 0.7
 0.1
 5.0
 0.5
 0.76

II
 0.05
 0.7
 0.1
 5.0
 0.5
 5.0

III
 0.05
 0.7
 0.1
 10
 0.5
 0.76

IV
 0.05
 0.7
 0.2
 5.0
 0.5
 0.76

V
 0.05
 0.7
 0.1
 5.0
 0.1
 0.76

VI
 0.05
 7.0
 0.1
 5.0
 0.5
 0.76

VII
 0.15
 0.7
 0.1
 5.0
 0.5
 0.76
Fig. 4 shows plots of the skin friction at the plate as a
function of the exponential index x from where we observe
that as the Prandtl number increases from, say, Pr = 0.71
as corresponds to air, to Pr = 7.0, as would correspond
to water there is a corresponding increase in the skin fric-
tion. The gradient of the curves in Fig. 4 increase as the
Prandtl number increases and for Pr = 0.7 (not shown),
the gradient is zero. In other words the gradient of the
curves of the skin friction at the plate increase as you go
from a compressible fluid, such as air (Pr = 0.71) to an
incompressible fluid such as water (Pr = 7.0).

5. Conclusions

We can conclude from our results that for the special
case of a single pulse:

	 the temperature boundary layer increases as the radia-
tion parameter and the time period are increased,
	 increase in the Prandtl number is accompanied by a

decrease in the temperature,
	 variation of the exponential index x has little effect on

the temperature or the velocity distributions,
	 the velocity increases as Gr, Pr, and M are increased,

and
	 the skin friction for a compressible fluid such as air

Pr = 0.71, is lower than the skin friction for an incom-
pressible fluid such as water Pr = 7.
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We accept that there are other methods of solution of
problems of this nature but we think, as a first approxima-
tion, errors associated with the assumption of Boussinesq
approximation for the compressible fluids, are more than
made up for by the simplicity of the present model.
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